Hands-on Exercise 2A: Spatial Weights and Applications

Author

Kristine Joy Paas

Published

November 20, 2023

Modified

November 22, 2023

Overview

This hands-on exercise covers Chapter 8: Spatial Weights and Applications

I learned about the following:

  • Calculating spatial weights
  • Calculating spatially lagged variables

Getting Started

Preparing the data sets

Data sets used on this exercise were downloaded from E-learn.

Geospatial

  • Hunan county boundary layer (shp format)

Aspatial

  • Hunan’s local development indicators in 2012 (csv format)

Next, is putting them under the Hands-on_Ex2 directory, with the following file structure:

Hands-on_Ex2
└── data
    ├── aspatial
       └── Hunan_2012.csv
    └── geospatial
        ├── Hunan.dbf
        ├── Hunan.prj
        ├── Hunan.qpj
        ├── Hunan.shp
        └── Hunan.shx

Installing R packages

I used the code below to install the R packages used in the exercise:

pacman::p_load(sf, spdep, tmap, tidyverse, knitr)

Getting the Data Into R Environment

Importing data sets

I used st_read() to import the geospatial shp data.

hunan <- st_read(dsn = "data/geospatial",
                 layer = "Hunan")
Reading layer `Hunan' from data source 
  `/Users/kjcpaas/Documents/Grad School/ISSS624/Project/ISSS624/Hands-on_Ex2/data/geospatial' 
  using driver `ESRI Shapefile'
Simple feature collection with 88 features and 7 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 108.7831 ymin: 24.6342 xmax: 114.2544 ymax: 30.12812
Geodetic CRS:  WGS 84
Note

In the previous exercises, we transformed the data with EPSG:3414. However, that is not applicable for this data set as we are not working with Singapore 🇸🇬 data set.

As with the previous exercises, I used read_csv() to import aspatial csv data.

hunan2012 <- read_csv("data/aspatial/Hunan_2012.csv")

Joining the data sets

In the exercise, we have to join the 2 data sets using this code:

hunan <- left_join(hunan, hunan2012)%>%
  select(1:4, 7, 15)
Note

We did not specify any columns to join by but left_join detected common column, County, so it joined the 2 data sets by this column.

At the end of this, we are left with 7 columns, which includes GDPPC from the aspatial data, which contains data for Gross Domestic Product per Capita.

Generating a quick thematic map

I used qtm() and other tmap functions to generate a map of the data.

basemap <- tm_shape(hunan) +
  tm_polygons() +
  tm_text("NAME_3", size=0.5)

gdppc <- qtm(hunan, "GDPPC")
tmap_arrange(basemap, gdppc, asp=1, ncol=2)

Tip

Maps do not need to be fancy at first. Using qtm() can already give us some useful insights and can guide us on how to proceed further with our analytics.

For example, from this map, I already see that the counties with the highest GDP per capital in the Central Eastern part of China, aside from a few exceptions.

Computing Contiguity Spatial Weights

This part makes use of poly2nb() to calculate the spatial weights.

Computing (QUEEN) contiguity based neighbors

wm_q <- poly2nb(hunan, queen=TRUE)
summary(wm_q)
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 
Link number distribution:

 1  2  3  4  5  6  7  8  9 11 
 2  2 12 16 24 14 11  4  2  1 
2 least connected regions:
30 65 with 1 link
1 most connected region:
85 with 11 links

This showed that there are 2 least connected regions, 30 and 65. Furthermore, there is 1 county is most connected, 85.

Below I analyzed these counties of interest

Least connected counties

First, I checked the names of the least connected counties.

hunan$County[c(30, 65)]
[1] "Xinhuang" "Linxiang"

The least connected counties are Xinhuang in the West and Linxiang in the Northeast.

It makes sense for these counties to be least connected as they are counties that only have 1 neighbors each, according to the map.

hunan$County[c(
  wm_q[[30]],
  wm_q[[65]]
)]
[1] "Zhijiang" "Yueyang" 

Xinhuang borders Zhijiang to the East, while Linxiang borders Yueyang to the Southwest.

Most connected county

hunan$County[85]
[1] "Taoyuan"

The most connected county is Taoyuan with 11 neighbors. It’s neighbors are:

hunan$County[wm_q[[85]]]
 [1] "Anxiang"  "Hanshou"  "Jinshi"   "Linli"    "Shimen"   "Yuanling"
 [7] "Anhua"    "Nan"      "Cili"     "Sangzhi"  "Taojiang"

This makes perfect sense as Taoyuan is a relatively large, inner county.

Creating (ROOK) contiguity based neighbors

wm_r <- poly2nb(hunan, queen=FALSE)
summary(wm_r)
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 440 
Percentage nonzero weights: 5.681818 
Average number of links: 5 
Link number distribution:

 1  2  3  4  5  6  7  8  9 10 
 2  2 12 20 21 14 11  3  2  1 
2 least connected regions:
30 65 with 1 link
1 most connected region:
85 with 10 links

This operation resulted in 8 fewer non-zero links. The most connected region, Taoyuan, has one less neighbor. However, the least connected regions stayed the same.

setdiff(hunan$County[wm_q[[85]]], hunan$County[wm_r[[85]]])
[1] "Nan"

Nan is not considered a neighbor of Taoyuan using the Rook method. I check the documentation of poly2nb() to understand why.

Note

When setting queen=false, it requires boundaries to be more that just one point. On the other hand, with queen=true, it requires the objects to shared only a single point.

As such, having 8 less links means 8 pairs of counties only share a single point in their boundaries.

Looking at the map, Nan indeed only touches Taoyuan at a single point:

Visualising contiguity weights

To plot the contiguity, we need to get the centroids of each county region. To get this for a single county, the following code can be used.

hunan$geometry[1] %>% st_centroid(.x)
Geometry set for 1 feature 
Geometry type: POINT
Dimension:     XY
Bounding box:  xmin: 112.1531 ymin: 29.44346 xmax: 112.1531 ymax: 29.44346
Geodetic CRS:  WGS 84

However, we needed to plot each longitude and latitude separately and create a new data frame for centroid coordinates from those. In order to do that, I copied the code chunks from the exercise.

longitude <- map_dbl(hunan$geometry, ~st_centroid(.x)[[1]])
latitude <- map_dbl(hunan$geometry, ~st_centroid(.x)[[2]])
coords <- cbind(longitude, latitude)
head(coords)
     longitude latitude
[1,]  112.1531 29.44362
[2,]  112.0372 28.86489
[3,]  111.8917 29.47107
[4,]  111.7031 29.74499
[5,]  111.6138 29.49258
[6,]  111.0341 29.79863

Plotting contiguity based neighbors map

I plotted the Queen and Rooks maps on the same plot instead of the recommended way in the exercise. This is so I could see which neighbors where present in the Queen method but were not present in the Rook method.

They are the red lines in the map.

plot(hunan$geometry, border="lightgrey")
plot(wm_q, coords, pch = 19, cex = 0.6, add = TRUE, col= "red", main="Queen Contiguity")
plot(wm_r, coords, pch = 19, cex = 0.6, add = TRUE, col = "blue", main="Rook Contiguity")

Computing distance-based neighbors

Tip

The data set uses WSG84 projection so distances are calculated according to this.

This part makes use of knearneigh() to calculate the spatial weights.

Note

One observation is that a county’s nearest neighbor does not necessarily mean that said country is also the nearest neighbor of the neighboring country.

For example if B is the nearest neighbor of A, A may not be the nearest neighbor of B. B’s nearest neighbor might be another county, e.g., C.

See below for some examples.

knearneigh(coords)$nn[c(1,3,30,33,28,49)]
[1]  3  1 33 28 49 28

In this example, 1 and 3 are nearest neighbors of each other. However, 30 is not 33’s nearest neighbor even though 33 is 30’s.

Determining cut-off distance

k1 <- knn2nb(knearneigh(coords))
k1dists <- unlist(nbdists(k1, coords, longlat = TRUE))
summary(k1dists)
   Min. 1st Qu.  Median    Mean 3rd Qu.    Max. 
  24.79   32.57   38.01   39.07   44.52   61.79 
Note

This means that the (centroids of) closest neighbors are 24.79 km apart while the farthest neighbors are 61.79 km apart.

To ensure that all counties will have at least one neighbors, we set the cut-off distance to the maximum distance, or 61.79 km.

Computing fixed distance weight matrix

To figure out the neighbors within the 62km distance (rounded out from the previous result), we use dnearneigh() .

wm_d62 <- dnearneigh(coords, 0, 62, longlat = TRUE)
wm_d62
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 324 
Percentage nonzero weights: 4.183884 
Average number of links: 3.681818 
Tip

The average number of links here correspond to the average number of neighbors each county has.

That means for every county in China, there are 3.681818 other counties within 62 km of them, on average.

The example below gives a glimpse of neighbors each county has.

str(wm_d62)
List of 88
 $ : int [1:5] 3 4 5 57 64
 $ : int [1:4] 57 58 78 85
 $ : int [1:4] 1 4 5 57
 $ : int [1:3] 1 3 5
 $ : int [1:4] 1 3 4 85
 $ : int 69
 $ : int [1:2] 67 84
 $ : int [1:4] 9 46 47 78
 $ : int [1:4] 8 46 68 84
 $ : int [1:4] 16 22 70 72
 $ : int [1:3] 14 17 72
 $ : int [1:5] 13 60 61 63 83
 $ : int [1:4] 12 15 60 83
 $ : int [1:2] 11 17
 $ : int 13
 $ : int [1:4] 10 17 22 83
 $ : int [1:3] 11 14 16
 $ : int [1:3] 20 22 63
 $ : int [1:5] 20 21 73 74 82
 $ : int [1:5] 18 19 21 22 82
 $ : int [1:6] 19 20 35 74 82 86
 $ : int [1:4] 10 16 18 20
 $ : int [1:3] 41 77 82
 $ : int [1:4] 25 28 31 54
 $ : int [1:4] 24 28 33 81
 $ : int [1:4] 27 33 42 81
 $ : int [1:2] 26 29
 $ : int [1:6] 24 25 33 49 52 54
 $ : int [1:2] 27 37
 $ : int 33
 $ : int [1:2] 24 36
 $ : int 50
 $ : int [1:5] 25 26 28 30 81
 $ : int [1:3] 36 45 80
 $ : int [1:6] 21 41 46 47 80 82
 $ : int [1:5] 31 34 45 56 80
 $ : int [1:2] 29 42
 $ : int [1:3] 44 77 79
 $ : int [1:4] 40 42 43 81
 $ : int [1:3] 39 45 79
 $ : int [1:5] 23 35 45 79 82
 $ : int [1:5] 26 37 39 43 81
 $ : int [1:3] 39 42 44
 $ : int [1:2] 38 43
 $ : int [1:6] 34 36 40 41 79 80
 $ : int [1:5] 8 9 35 47 86
 $ : int [1:5] 8 35 46 80 86
 $ : int [1:5] 50 51 52 53 55
 $ : int [1:4] 28 51 52 54
 $ : int [1:6] 32 48 51 52 54 55
 $ : int [1:4] 48 49 50 52
 $ : int [1:6] 28 48 49 50 51 54
 $ : int [1:2] 48 55
 $ : int [1:5] 24 28 49 50 52
 $ : int [1:4] 48 50 53 75
 $ : int 36
 $ : int [1:5] 1 2 3 58 64
 $ : int [1:5] 2 57 64 66 68
 $ : int [1:3] 60 87 88
 $ : int [1:4] 12 13 59 61
 $ : int [1:5] 12 60 62 63 87
 $ : int [1:4] 61 63 77 87
 $ : int [1:5] 12 18 61 62 83
 $ : int [1:4] 1 57 58 76
 $ : int 76
 $ : int [1:5] 58 67 68 76 84
 $ : int [1:2] 7 66
 $ : int [1:4] 9 58 66 84
 $ : int [1:2] 6 75
 $ : int [1:3] 10 72 73
 $ : int [1:2] 73 74
 $ : int [1:3] 10 11 70
 $ : int [1:4] 19 70 71 74
 $ : int [1:5] 19 21 71 73 86
 $ : int [1:2] 55 69
 $ : int [1:3] 64 65 66
 $ : int [1:3] 23 38 62
 $ : int [1:2] 2 8
 $ : int [1:4] 38 40 41 45
 $ : int [1:5] 34 35 36 45 47
 $ : int [1:5] 25 26 33 39 42
 $ : int [1:6] 19 20 21 23 35 41
 $ : int [1:4] 12 13 16 63
 $ : int [1:4] 7 9 66 68
 $ : int [1:2] 2 5
 $ : int [1:4] 21 46 47 74
 $ : int [1:4] 59 61 62 88
 $ : int [1:2] 59 87
 - attr(*, "class")= chr "nb"
 - attr(*, "region.id")= chr [1:88] "1" "2" "3" "4" ...
 - attr(*, "call")= language dnearneigh(x = coords, d1 = 0, d2 = 62, longlat = TRUE)
 - attr(*, "dnn")= num [1:2] 0 62
 - attr(*, "bounds")= chr [1:2] "GE" "LE"
 - attr(*, "nbtype")= chr "distance"
 - attr(*, "sym")= logi TRUE
Note

Another observation here is that Taoyuan, which had 11 contiguity-based neighbors, now only has 2 neighbors when using distance-based methods.

wm_d62[88]
[[1]]
[1] 59 87

Plotting distance-based matrix

plot(hunan$geometry, border="lightgrey")
plot(wm_d62, coords, add=TRUE)
plot(k1, coords, add=TRUE, col="red", length=0.08)

Note

💡 I found out that plotting the red lines first before the black lines would just display black lines.

The technique of rendering the superset before the subset is a good technique to display the difference in the different plots.

After realizing this, I applied the same technique in the Queen and Rook maps in [##Visualising contiguity weights].

Computing adaptive distance weight matrix

There are cases in which knowing the k-nearest neighbors is useful. It can be done by passing k to knearneigh:

knn6 <- knn2nb(knearneigh(coords, k=6))
knn6
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 528 
Percentage nonzero weights: 6.818182 
Average number of links: 6 
Non-symmetric neighbours list

Plotting this in a map and overlapping with the wm_d62 map, we can see that more neighbor links (in red) were added so that each county has 6 neighbors.

plot(hunan$geometry, border="lightgrey")
plot(knn6, coords, add=TRUE, col="red", length=0.08)
plot(wm_d62, coords, add=TRUE)

Weights based on IDW

Next I calculated inversed distance values. This is calculated by:

\[ 1/distance \]

In R, it can be obtained by:

dist <- nbdists(wm_q, coords, longlat = TRUE)
ids <- lapply(dist, function(x) 1/(x))
ids
[[1]]
[1] 0.01535405 0.03916350 0.01820896 0.02807922 0.01145113

[[2]]
[1] 0.01535405 0.01764308 0.01925924 0.02323898 0.01719350

[[3]]
[1] 0.03916350 0.02822040 0.03695795 0.01395765

[[4]]
[1] 0.01820896 0.02822040 0.03414741 0.01539065

[[5]]
[1] 0.03695795 0.03414741 0.01524598 0.01618354

[[6]]
[1] 0.015390649 0.015245977 0.021748129 0.011883901 0.009810297

[[7]]
[1] 0.01708612 0.01473997 0.01150924 0.01872915

[[8]]
[1] 0.02022144 0.03453056 0.02529256 0.01036340 0.02284457 0.01500600 0.01515314

[[9]]
[1] 0.02022144 0.01574888 0.02109502 0.01508028 0.02902705 0.01502980

[[10]]
[1] 0.02281552 0.01387777 0.01538326 0.01346650 0.02100510 0.02631658 0.01874863
[8] 0.01500046

[[11]]
[1] 0.01882869 0.02243492 0.02247473

[[12]]
[1] 0.02779227 0.02419652 0.02333385 0.02986130 0.02335429

[[13]]
[1] 0.02779227 0.02650020 0.02670323 0.01714243

[[14]]
[1] 0.01882869 0.01233868 0.02098555

[[15]]
[1] 0.02650020 0.01233868 0.01096284 0.01562226

[[16]]
[1] 0.02281552 0.02466962 0.02765018 0.01476814 0.01671430

[[17]]
[1] 0.01387777 0.02243492 0.02098555 0.01096284 0.02466962 0.01593341 0.01437996

[[18]]
[1] 0.02039779 0.02032767 0.01481665 0.01473691 0.01459380

[[19]]
[1] 0.01538326 0.01926323 0.02668415 0.02140253 0.01613589 0.01412874

[[20]]
[1] 0.01346650 0.02039779 0.01926323 0.01723025 0.02153130 0.01469240 0.02327034

[[21]]
[1] 0.02668415 0.01723025 0.01766299 0.02644986 0.02163800

[[22]]
[1] 0.02100510 0.02765018 0.02032767 0.02153130 0.01489296

[[23]]
[1] 0.01481665 0.01469240 0.01401432 0.02246233 0.01880425 0.01530458 0.01849605

[[24]]
[1] 0.02354598 0.01837201 0.02607264 0.01220154 0.02514180

[[25]]
[1] 0.02354598 0.02188032 0.01577283 0.01949232 0.02947957

[[26]]
[1] 0.02155798 0.01745522 0.02212108 0.02220532

[[27]]
[1] 0.02155798 0.02490625 0.01562326

[[28]]
[1] 0.01837201 0.02188032 0.02229549 0.03076171 0.02039506

[[29]]
[1] 0.02490625 0.01686587 0.01395022

[[30]]
[1] 0.02090587

[[31]]
[1] 0.02607264 0.01577283 0.01219005 0.01724850 0.01229012 0.01609781 0.01139438
[8] 0.01150130

[[32]]
[1] 0.01220154 0.01219005 0.01712515 0.01340413 0.01280928 0.01198216 0.01053374
[8] 0.01065655

[[33]]
[1] 0.01949232 0.01745522 0.02229549 0.02090587 0.01979045

[[34]]
[1] 0.03113041 0.03589551 0.02882915

[[35]]
[1] 0.01766299 0.02185795 0.02616766 0.02111721 0.02108253 0.01509020

[[36]]
[1] 0.01724850 0.03113041 0.01571707 0.01860991 0.02073549 0.01680129

[[37]]
[1] 0.01686587 0.02234793 0.01510990 0.01550676

[[38]]
[1] 0.01401432 0.02407426 0.02276151 0.01719415

[[39]]
[1] 0.01229012 0.02172543 0.01711924 0.02629732 0.01896385

[[40]]
[1] 0.01609781 0.01571707 0.02172543 0.01506473 0.01987922 0.01894207

[[41]]
[1] 0.02246233 0.02185795 0.02205991 0.01912542 0.01601083 0.01742892

[[42]]
[1] 0.02212108 0.01562326 0.01395022 0.02234793 0.01711924 0.01836831 0.01683518

[[43]]
[1] 0.01510990 0.02629732 0.01506473 0.01836831 0.03112027 0.01530782

[[44]]
[1] 0.01550676 0.02407426 0.03112027 0.01486508

[[45]]
[1] 0.03589551 0.01860991 0.01987922 0.02205991 0.02107101 0.01982700

[[46]]
[1] 0.03453056 0.04033752 0.02689769

[[47]]
[1] 0.02529256 0.02616766 0.04033752 0.01949145 0.02181458

[[48]]
[1] 0.02313819 0.03370576 0.02289485 0.01630057 0.01818085

[[49]]
[1] 0.03076171 0.02138091 0.02394529 0.01990000

[[50]]
[1] 0.01712515 0.02313819 0.02551427 0.02051530 0.02187179

[[51]]
[1] 0.03370576 0.02138091 0.02873854

[[52]]
[1] 0.02289485 0.02394529 0.02551427 0.02873854 0.03516672

[[53]]
[1] 0.01630057 0.01979945 0.01253977

[[54]]
[1] 0.02514180 0.02039506 0.01340413 0.01990000 0.02051530 0.03516672

[[55]]
[1] 0.01280928 0.01818085 0.02187179 0.01979945 0.01882298

[[56]]
[1] 0.01036340 0.01139438 0.01198216 0.02073549 0.01214479 0.01362855 0.01341697

[[57]]
[1] 0.028079221 0.017643082 0.031423501 0.029114131 0.013520292 0.009903702

[[58]]
[1] 0.01925924 0.03142350 0.02722997 0.01434859 0.01567192

[[59]]
[1] 0.01696711 0.01265572 0.01667105 0.01785036

[[60]]
[1] 0.02419652 0.02670323 0.01696711 0.02343040

[[61]]
[1] 0.02333385 0.01265572 0.02343040 0.02514093 0.02790764 0.01219751 0.02362452

[[62]]
[1] 0.02514093 0.02002219 0.02110260

[[63]]
[1] 0.02986130 0.02790764 0.01407043 0.01805987

[[64]]
[1] 0.02911413 0.01689892

[[65]]
[1] 0.02471705

[[66]]
[1] 0.01574888 0.01726461 0.03068853 0.01954805 0.01810569

[[67]]
[1] 0.01708612 0.01726461 0.01349843 0.01361172

[[68]]
[1] 0.02109502 0.02722997 0.03068853 0.01406357 0.01546511

[[69]]
[1] 0.02174813 0.01645838 0.01419926

[[70]]
[1] 0.02631658 0.01963168 0.02278487

[[71]]
[1] 0.01473997 0.01838483 0.03197403

[[72]]
[1] 0.01874863 0.02247473 0.01476814 0.01593341 0.01963168

[[73]]
[1] 0.01500046 0.02140253 0.02278487 0.01838483 0.01652709

[[74]]
[1] 0.01150924 0.01613589 0.03197403 0.01652709 0.01342099 0.02864567

[[75]]
[1] 0.011883901 0.010533736 0.012539774 0.018822977 0.016458383 0.008217581

[[76]]
[1] 0.01352029 0.01434859 0.01689892 0.02471705 0.01954805 0.01349843 0.01406357

[[77]]
[1] 0.014736909 0.018804247 0.022761507 0.012197506 0.020022195 0.014070428
[7] 0.008440896

[[78]]
[1] 0.02323898 0.02284457 0.01508028 0.01214479 0.01567192 0.01546511 0.01140779

[[79]]
[1] 0.01530458 0.01719415 0.01894207 0.01912542 0.01530782 0.01486508 0.02107101

[[80]]
[1] 0.01500600 0.02882915 0.02111721 0.01680129 0.01601083 0.01982700 0.01949145
[8] 0.01362855

[[81]]
[1] 0.02947957 0.02220532 0.01150130 0.01979045 0.01896385 0.01683518

[[82]]
[1] 0.02327034 0.02644986 0.01849605 0.02108253 0.01742892

[[83]]
[1] 0.023354289 0.017142433 0.015622258 0.016714303 0.014379961 0.014593799
[7] 0.014892965 0.018059871 0.008440896

[[84]]
[1] 0.01872915 0.02902705 0.01810569 0.01361172 0.01342099 0.01297994

[[85]]
 [1] 0.011451133 0.017193502 0.013957649 0.016183544 0.009810297 0.010656545
 [7] 0.013416965 0.009903702 0.014199260 0.008217581 0.011407794

[[86]]
[1] 0.01515314 0.01502980 0.01412874 0.02163800 0.01509020 0.02689769 0.02181458
[8] 0.02864567 0.01297994

[[87]]
[1] 0.01667105 0.02362452 0.02110260 0.02058034

[[88]]
[1] 0.01785036 0.02058034

Row-standardized weights matrix

Next we assign the weight of 1/(# of neighbors) to each neighbor.

rswm_q <- nb2listw(wm_q, style="W", zero.policy = TRUE)
rswm_q
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 

Weights style: W 
Weights constants summary:
   n   nn S0       S1       S2
W 88 7744 88 37.86334 365.9147

Next I inspected some weights values to check if the results are consistent with our expectations.

rswm_q$weights[c(1, 10, 30, 85)]
[[1]]
[1] 0.2 0.2 0.2 0.2 0.2

[[2]]
[1] 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

[[3]]
[1] 1

[[4]]
 [1] 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909
 [7] 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909

As expected, their values are equal to 1/(# of neighbors).

Next, the same was also done to derive a row standardised distance weight matrix.

rswm_ids <- nb2listw(wm_q, glist=ids, style="B", zero.policy=TRUE)
rswm_ids
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 

Weights style: B 
Weights constants summary:
   n   nn       S0        S1     S2
B 88 7744 8.786867 0.3776535 3.8137

Checking some of the matrix values:

rswm_ids$weights[c(1, 10, 30, 85)]
[[1]]
[1] 0.01535405 0.03916350 0.01820896 0.02807922 0.01145113

[[2]]
[1] 0.02281552 0.01387777 0.01538326 0.01346650 0.02100510 0.02631658 0.01874863
[8] 0.01500046

[[3]]
[1] 0.02090587

[[4]]
 [1] 0.011451133 0.017193502 0.013957649 0.016183544 0.009810297 0.010656545
 [7] 0.013416965 0.009903702 0.014199260 0.008217581 0.011407794
Note

Results seem to be the same as when using nbdists() and lapply() in Weights based on IDW.

Finally, we get some summary of the values.

summary(unlist(rswm_ids$weights))
    Min.  1st Qu.   Median     Mean  3rd Qu.     Max. 
0.008218 0.015088 0.018739 0.019614 0.022823 0.040338 

Application of Spatial Weight Matrix

Spatial lag with row-standardized weights

First, I computed the spatially lagged values for each polygon.

GDPPC.lag <- lag.listw(rswm_q, hunan$GDPPC)
GDPPC.lag
 [1] 24847.20 22724.80 24143.25 27737.50 27270.25 21248.80 43747.00 33582.71
 [9] 45651.17 32027.62 32671.00 20810.00 25711.50 30672.33 33457.75 31689.20
[17] 20269.00 23901.60 25126.17 21903.43 22718.60 25918.80 20307.00 20023.80
[25] 16576.80 18667.00 14394.67 19848.80 15516.33 20518.00 17572.00 15200.12
[33] 18413.80 14419.33 24094.50 22019.83 12923.50 14756.00 13869.80 12296.67
[41] 15775.17 14382.86 11566.33 13199.50 23412.00 39541.00 36186.60 16559.60
[49] 20772.50 19471.20 19827.33 15466.80 12925.67 18577.17 14943.00 24913.00
[57] 25093.00 24428.80 17003.00 21143.75 20435.00 17131.33 24569.75 23835.50
[65] 26360.00 47383.40 55157.75 37058.00 21546.67 23348.67 42323.67 28938.60
[73] 25880.80 47345.67 18711.33 29087.29 20748.29 35933.71 15439.71 29787.50
[81] 18145.00 21617.00 29203.89 41363.67 22259.09 44939.56 16902.00 16930.00

The spatially lagged GDPPC values were appended to the Hunan data using the code below:

lag.list <- list(hunan$NAME_3, lag.listw(rswm_q, hunan$GDPPC))
lag.res <- as.data.frame(lag.list)
colnames(lag.res) <- c("NAME_3", "lag GDPPC")
hunan <- left_join(hunan,lag.res)
head(hunan)
Simple feature collection with 6 features and 7 fields
Geometry type: POLYGON
Dimension:     XY
Bounding box:  xmin: 110.4922 ymin: 28.61762 xmax: 112.3013 ymax: 30.12812
Geodetic CRS:  WGS 84
   NAME_2  ID_3  NAME_3   ENGTYPE_3  County GDPPC lag GDPPC
1 Changde 21098 Anxiang      County Anxiang 23667  24847.20
2 Changde 21100 Hanshou      County Hanshou 20981  22724.80
3 Changde 21101  Jinshi County City  Jinshi 34592  24143.25
4 Changde 21102      Li      County      Li 24473  27737.50
5 Changde 21103   Linli      County   Linli 25554  27270.25
6 Changde 21104  Shimen      County  Shimen 27137  21248.80
                        geometry
1 POLYGON ((112.0625 29.75523...
2 POLYGON ((112.2288 29.11684...
3 POLYGON ((111.8927 29.6013,...
4 POLYGON ((111.3731 29.94649...
5 POLYGON ((111.6324 29.76288...
6 POLYGON ((110.8825 30.11675...

Next, the GDPPC and spatial lag GDPPC were plotted for comparison

gdppc <- qtm(hunan, "GDPPC")
lag_gdppc <- qtm(hunan, "lag GDPPC")
tmap_arrange(gdppc, lag_gdppc, asp=1, ncol=2)

Note

The spatial correlation seems to appear more positive among counties in the East.

Spatial lag as a sum of neighboring values

The spatial lag as a sum of neighboring values was calculated by assigning binary weights.

b_weights <- lapply(wm_q, function(x) 0*x + 1)
b_weights2 <- nb2listw(wm_q, 
                       glist = b_weights, 
                       style = "B")
b_weights2
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 448 
Percentage nonzero weights: 5.785124 
Average number of links: 5.090909 

Weights style: B 
Weights constants summary:
   n   nn  S0  S1    S2
B 88 7744 448 896 10224

Then, these weights were applied to the GDPPC values, and appending the lag_sum data to thehunan data set.

lag_sum <- list(hunan$NAME_3, lag.listw(b_weights2, hunan$GDPPC))
lag.res <- as.data.frame(lag_sum)
colnames(lag.res) <- c("NAME_3", "lag_sum GDPPC")
hunan <- left_join(hunan, lag.res)

Lastly, I plotted the map.

gdppc <- qtm(hunan, "GDPPC")
lag_sum_gdppc <- qtm(hunan, "lag_sum GDPPC")
tmap_arrange(gdppc, lag_sum_gdppc, asp=1, ncol=2)

Note

The lag_sum plot looks more scattered compared to the lag plot.

Spatial window average

First, I added the diagonal element to the neighbor list.

wm_qs <- include.self(wm_q)

Next, I calculated the weights for the new list.

wm_qs <- nb2listw(wm_qs)
wm_qs
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 536 
Percentage nonzero weights: 6.921488 
Average number of links: 6.090909 

Weights style: W 
Weights constants summary:
   n   nn S0       S1       S2
W 88 7744 88 30.90265 357.5308

Then, I creates the lag variable from the weight structure and GDPPC variable.

lag_w_avg_gpdpc <- lag.listw(wm_qs, hunan$GDPPC)
lag_w_avg_gpdpc
 [1] 24650.50 22434.17 26233.00 27084.60 26927.00 22230.17 47621.20 37160.12
 [9] 49224.71 29886.89 26627.50 22690.17 25366.40 25825.75 30329.00 32682.83
[17] 25948.62 23987.67 25463.14 21904.38 23127.50 25949.83 20018.75 19524.17
[25] 18955.00 17800.40 15883.00 18831.33 14832.50 17965.00 17159.89 16199.44
[33] 18764.50 26878.75 23188.86 20788.14 12365.20 15985.00 13764.83 11907.43
[41] 17128.14 14593.62 11644.29 12706.00 21712.29 43548.25 35049.00 16226.83
[49] 19294.40 18156.00 19954.75 18145.17 12132.75 18419.29 14050.83 23619.75
[57] 24552.71 24733.67 16762.60 20932.60 19467.75 18334.00 22541.00 26028.00
[65] 29128.50 46569.00 47576.60 36545.50 20838.50 22531.00 42115.50 27619.00
[73] 27611.33 44523.29 18127.43 28746.38 20734.50 33880.62 14716.38 28516.22
[81] 18086.14 21244.50 29568.80 48119.71 22310.75 43151.60 17133.40 17009.33

Subsequently, I processed the data for further analysis.

lag.list.wm_qs <- list(hunan$NAME_3, lag.listw(wm_qs, hunan$GDPPC))
lag_wm_qs.res <- as.data.frame(lag.list.wm_qs)
colnames(lag_wm_qs.res) <- c("NAME_3", "lag_window_avg GDPPC")
hunan <- left_join(hunan, lag_wm_qs.res)

I inspected the different lag values to figure out if there was any pattern. It was hard to do by eye on this table.

hunan %>%
  select("County", "lag GDPPC", "lag_window_avg GDPPC") %>%
  kable()
County lag GDPPC lag_window_avg GDPPC geometry
Anxiang 24847.20 24650.50 POLYGON ((112.0625 29.75523…
Hanshou 22724.80 22434.17 POLYGON ((112.2288 29.11684…
Jinshi 24143.25 26233.00 POLYGON ((111.8927 29.6013,…
Li 27737.50 27084.60 POLYGON ((111.3731 29.94649…
Linli 27270.25 26927.00 POLYGON ((111.6324 29.76288…
Shimen 21248.80 22230.17 POLYGON ((110.8825 30.11675…
Liuyang 43747.00 47621.20 POLYGON ((113.9905 28.5682,…
Ningxiang 33582.71 37160.12 POLYGON ((112.7181 28.38299…
Wangcheng 45651.17 49224.71 POLYGON ((112.7914 28.52688…
Anren 32027.62 29886.89 POLYGON ((113.1757 26.82734…
Guidong 32671.00 26627.50 POLYGON ((114.1799 26.20117…
Jiahe 20810.00 22690.17 POLYGON ((112.4425 25.74358…
Linwu 25711.50 25366.40 POLYGON ((112.5914 25.55143…
Rucheng 30672.33 25825.75 POLYGON ((113.6759 25.87578…
Yizhang 33457.75 30329.00 POLYGON ((113.2621 25.68394…
Yongxing 31689.20 32682.83 POLYGON ((113.3169 26.41843…
Zixing 20269.00 25948.62 POLYGON ((113.7311 26.16259…
Changning 23901.60 23987.67 POLYGON ((112.6144 26.60198…
Hengdong 25126.17 25463.14 POLYGON ((113.1056 27.21007…
Hengnan 21903.43 21904.38 POLYGON ((112.7599 26.98149…
Hengshan 22718.60 23127.50 POLYGON ((112.607 27.4689, …
Leiyang 25918.80 25949.83 POLYGON ((112.9996 26.69276…
Qidong 20307.00 20018.75 POLYGON ((111.7818 27.0383,…
Chenxi 20023.80 19524.17 POLYGON ((110.2624 28.21778…
Zhongfang 16576.80 18955.00 POLYGON ((109.9431 27.72858…
Huitong 18667.00 17800.40 POLYGON ((109.9419 27.10512…
Jingzhou 14394.67 15883.00 POLYGON ((109.8186 26.75842…
Mayang 19848.80 18831.33 POLYGON ((109.795 27.98008,…
Tongdao 15516.33 14832.50 POLYGON ((109.9294 26.46561…
Xinhuang 20518.00 17965.00 POLYGON ((109.227 27.43733,…
Xupu 17572.00 17159.89 POLYGON ((110.7189 28.30485…
Yuanling 15200.12 16199.44 POLYGON ((110.9652 28.99895…
Zhijiang 18413.80 18764.50 POLYGON ((109.8818 27.60661…
Lengshuijiang 14419.33 26878.75 POLYGON ((111.5307 27.81472…
Shuangfeng 24094.50 23188.86 POLYGON ((112.263 27.70421,…
Xinhua 22019.83 20788.14 POLYGON ((111.3345 28.19642…
Chengbu 12923.50 12365.20 POLYGON ((110.4455 26.69317…
Dongan 14756.00 15985.00 POLYGON ((111.4531 26.86812…
Dongkou 13869.80 13764.83 POLYGON ((110.6622 27.37305…
Longhui 12296.67 11907.43 POLYGON ((110.985 27.65983,…
Shaodong 15775.17 17128.14 POLYGON ((111.9054 27.40254…
Suining 14382.86 14593.62 POLYGON ((110.389 27.10006,…
Wugang 11566.33 11644.29 POLYGON ((110.9878 27.03345…
Xinning 13199.50 12706.00 POLYGON ((111.0736 26.84627…
Xinshao 23412.00 21712.29 POLYGON ((111.6013 27.58275…
Shaoshan 39541.00 43548.25 POLYGON ((112.5391 27.97742…
Xiangxiang 36186.60 35049.00 POLYGON ((112.4549 28.05783…
Baojing 16559.60 16226.83 POLYGON ((109.7015 28.82844…
Fenghuang 20772.50 19294.40 POLYGON ((109.5239 28.19206…
Guzhang 19471.20 18156.00 POLYGON ((109.8968 28.74034…
Huayuan 19827.33 19954.75 POLYGON ((109.5647 28.61712…
Jishou 15466.80 18145.17 POLYGON ((109.8375 28.4696,…
Longshan 12925.67 12132.75 POLYGON ((109.6337 29.62521…
Luxi 18577.17 18419.29 POLYGON ((110.1067 28.41835…
Yongshun 14943.00 14050.83 POLYGON ((110.0003 29.29499…
Anhua 24913.00 23619.75 POLYGON ((111.6034 28.63716…
Nan 25093.00 24552.71 POLYGON ((112.3232 29.46074…
Yuanjiang 24428.80 24733.67 POLYGON ((112.4391 29.1791,…
Jianghua 17003.00 16762.60 POLYGON ((111.6461 25.29661…
Lanshan 21143.75 20932.60 POLYGON ((112.2286 25.61123…
Ningyuan 20435.00 19467.75 POLYGON ((112.0715 26.09892…
Shuangpai 17131.33 18334.00 POLYGON ((111.8864 26.11957…
Xintian 24569.75 22541.00 POLYGON ((112.2578 26.0796,…
Huarong 23835.50 26028.00 POLYGON ((112.9242 29.69134…
Linxiang 26360.00 29128.50 POLYGON ((113.5502 29.67418…
Miluo 47383.40 46569.00 POLYGON ((112.9902 29.02139…
Pingjiang 55157.75 47576.60 POLYGON ((113.8436 29.06152…
Xiangyin 37058.00 36545.50 POLYGON ((112.9173 28.98264…
Cili 21546.67 20838.50 POLYGON ((110.8822 29.69017…
Chaling 23348.67 22531.00 POLYGON ((113.7666 27.10573…
Liling 42323.67 42115.50 POLYGON ((113.5673 27.94346…
Yanling 28938.60 27619.00 POLYGON ((113.9292 26.6154,…
You 25880.80 27611.33 POLYGON ((113.5879 27.41324…
Zhuzhou 47345.67 44523.29 POLYGON ((113.2493 28.02411…
Sangzhi 18711.33 18127.43 POLYGON ((110.556 29.40543,…
Yueyang 29087.29 28746.38 POLYGON ((113.343 29.61064,…
Qiyang 20748.29 20734.50 POLYGON ((111.5563 26.81318…
Taojiang 35933.71 33880.62 POLYGON ((112.0508 28.67265…
Shaoyang 15439.71 14716.38 POLYGON ((111.5013 27.30207…
Lianyuan 29787.50 28516.22 POLYGON ((111.6789 28.02946…
Hongjiang 18145.00 18086.14 POLYGON ((110.1441 27.47513…
Hengyang 21617.00 21244.50 POLYGON ((112.7144 26.98613…
Guiyang 29203.89 29568.80 POLYGON ((113.0811 26.04963…
Changsha 41363.67 48119.71 POLYGON ((112.9421 28.03722…
Taoyuan 22259.09 22310.75 POLYGON ((112.0612 29.32855…
Xiangtan 44939.56 43151.60 POLYGON ((113.0426 27.8942,…
Dao 16902.00 17133.40 POLYGON ((111.498 25.81679,…
Jiangyong 16930.00 17009.33 POLYGON ((111.3659 25.39472…

After all the data processing, I could finally plot the spatial window average.

w_avg_gdppc <- qtm(hunan, "lag_window_avg GDPPC")
tmap_arrange(lag_gdppc, w_avg_gdppc, asp=1, ncol=2)

Note

The range of values became narrower, from 10,000 - 60,000 to 10,000 - 50,000. Furthermore, the map looks “cleaner” for the lag_window_average.

Spatial window sum

First, I added the diagonal element to the neighbor list.

wm_qs <- include.self(wm_q)

Then, binary weights were calculated from this new list.

b_weights <- lapply(wm_qs, function(x) 0*x + 1)
b_weights2 <- nb2listw(wm_qs, 
                       glist = b_weights, 
                       style = "B")
b_weights2
Characteristics of weights list object:
Neighbour list object:
Number of regions: 88 
Number of nonzero links: 536 
Percentage nonzero weights: 6.921488 
Average number of links: 6.090909 

Weights style: B 
Weights constants summary:
   n   nn  S0   S1    S2
B 88 7744 536 1072 14160
w_sum_gdppc <- list(hunan$NAME_3, lag.listw(b_weights2, hunan$GDPPC))
w_sum_gdppc
[[1]]
 [1] "Anxiang"       "Hanshou"       "Jinshi"        "Li"           
 [5] "Linli"         "Shimen"        "Liuyang"       "Ningxiang"    
 [9] "Wangcheng"     "Anren"         "Guidong"       "Jiahe"        
[13] "Linwu"         "Rucheng"       "Yizhang"       "Yongxing"     
[17] "Zixing"        "Changning"     "Hengdong"      "Hengnan"      
[21] "Hengshan"      "Leiyang"       "Qidong"        "Chenxi"       
[25] "Zhongfang"     "Huitong"       "Jingzhou"      "Mayang"       
[29] "Tongdao"       "Xinhuang"      "Xupu"          "Yuanling"     
[33] "Zhijiang"      "Lengshuijiang" "Shuangfeng"    "Xinhua"       
[37] "Chengbu"       "Dongan"        "Dongkou"       "Longhui"      
[41] "Shaodong"      "Suining"       "Wugang"        "Xinning"      
[45] "Xinshao"       "Shaoshan"      "Xiangxiang"    "Baojing"      
[49] "Fenghuang"     "Guzhang"       "Huayuan"       "Jishou"       
[53] "Longshan"      "Luxi"          "Yongshun"      "Anhua"        
[57] "Nan"           "Yuanjiang"     "Jianghua"      "Lanshan"      
[61] "Ningyuan"      "Shuangpai"     "Xintian"       "Huarong"      
[65] "Linxiang"      "Miluo"         "Pingjiang"     "Xiangyin"     
[69] "Cili"          "Chaling"       "Liling"        "Yanling"      
[73] "You"           "Zhuzhou"       "Sangzhi"       "Yueyang"      
[77] "Qiyang"        "Taojiang"      "Shaoyang"      "Lianyuan"     
[81] "Hongjiang"     "Hengyang"      "Guiyang"       "Changsha"     
[85] "Taoyuan"       "Xiangtan"      "Dao"           "Jiangyong"    

[[2]]
 [1] 147903 134605 131165 135423 134635 133381 238106 297281 344573 268982
[11] 106510 136141 126832 103303 151645 196097 207589 143926 178242 175235
[21] 138765 155699 160150 117145 113730  89002  63532 112988  59330  35930
[31] 154439 145795 112587 107515 162322 145517  61826  79925  82589  83352
[41] 119897 116749  81510  63530 151986 174193 210294  97361  96472 108936
[51]  79819 108871  48531 128935  84305 188958 171869 148402  83813 104663
[61] 155742  73336 112705  78084  58257 279414 237883 219273  83354  90124
[71] 168462 165714 165668 311663 126892 229971 165876 271045 117731 256646
[81] 126603 127467 295688 336838 267729 431516  85667  51028

Next, data was processed for further analysis.

w_sum_gdppc.res <- as.data.frame(w_sum_gdppc)
colnames(w_sum_gdppc.res) <- c("NAME_3", "w_sum GDPPC")
hunan <- left_join(hunan, w_sum_gdppc.res)

Next, I compared the lag_sum and w_sum values to check for patterns. Hard to see in this table format.

hunan %>%
  select("County", "lag_sum GDPPC", "w_sum GDPPC") %>%
  kable()
County lag_sum GDPPC w_sum GDPPC geometry
Anxiang 124236 147903 POLYGON ((112.0625 29.75523…
Hanshou 113624 134605 POLYGON ((112.2288 29.11684…
Jinshi 96573 131165 POLYGON ((111.8927 29.6013,…
Li 110950 135423 POLYGON ((111.3731 29.94649…
Linli 109081 134635 POLYGON ((111.6324 29.76288…
Shimen 106244 133381 POLYGON ((110.8825 30.11675…
Liuyang 174988 238106 POLYGON ((113.9905 28.5682,…
Ningxiang 235079 297281 POLYGON ((112.7181 28.38299…
Wangcheng 273907 344573 POLYGON ((112.7914 28.52688…
Anren 256221 268982 POLYGON ((113.1757 26.82734…
Guidong 98013 106510 POLYGON ((114.1799 26.20117…
Jiahe 104050 136141 POLYGON ((112.4425 25.74358…
Linwu 102846 126832 POLYGON ((112.5914 25.55143…
Rucheng 92017 103303 POLYGON ((113.6759 25.87578…
Yizhang 133831 151645 POLYGON ((113.2621 25.68394…
Yongxing 158446 196097 POLYGON ((113.3169 26.41843…
Zixing 141883 207589 POLYGON ((113.7311 26.16259…
Changning 119508 143926 POLYGON ((112.6144 26.60198…
Hengdong 150757 178242 POLYGON ((113.1056 27.21007…
Hengnan 153324 175235 POLYGON ((112.7599 26.98149…
Hengshan 113593 138765 POLYGON ((112.607 27.4689, …
Leiyang 129594 155699 POLYGON ((112.9996 26.69276…
Qidong 142149 160150 POLYGON ((111.7818 27.0383,…
Chenxi 100119 117145 POLYGON ((110.2624 28.21778…
Zhongfang 82884 113730 POLYGON ((109.9431 27.72858…
Huitong 74668 89002 POLYGON ((109.9419 27.10512…
Jingzhou 43184 63532 POLYGON ((109.8186 26.75842…
Mayang 99244 112988 POLYGON ((109.795 27.98008,…
Tongdao 46549 59330 POLYGON ((109.9294 26.46561…
Xinhuang 20518 35930 POLYGON ((109.227 27.43733,…
Xupu 140576 154439 POLYGON ((110.7189 28.30485…
Yuanling 121601 145795 POLYGON ((110.9652 28.99895…
Zhijiang 92069 112587 POLYGON ((109.8818 27.60661…
Lengshuijiang 43258 107515 POLYGON ((111.5307 27.81472…
Shuangfeng 144567 162322 POLYGON ((112.263 27.70421,…
Xinhua 132119 145517 POLYGON ((111.3345 28.19642…
Chengbu 51694 61826 POLYGON ((110.4455 26.69317…
Dongan 59024 79925 POLYGON ((111.4531 26.86812…
Dongkou 69349 82589 POLYGON ((110.6622 27.37305…
Longhui 73780 83352 POLYGON ((110.985 27.65983,…
Shaodong 94651 119897 POLYGON ((111.9054 27.40254…
Suining 100680 116749 POLYGON ((110.389 27.10006,…
Wugang 69398 81510 POLYGON ((110.9878 27.03345…
Xinning 52798 63530 POLYGON ((111.0736 26.84627…
Xinshao 140472 151986 POLYGON ((111.6013 27.58275…
Shaoshan 118623 174193 POLYGON ((112.5391 27.97742…
Xiangxiang 180933 210294 POLYGON ((112.4549 28.05783…
Baojing 82798 97361 POLYGON ((109.7015 28.82844…
Fenghuang 83090 96472 POLYGON ((109.5239 28.19206…
Guzhang 97356 108936 POLYGON ((109.8968 28.74034…
Huayuan 59482 79819 POLYGON ((109.5647 28.61712…
Jishou 77334 108871 POLYGON ((109.8375 28.4696,…
Longshan 38777 48531 POLYGON ((109.6337 29.62521…
Luxi 111463 128935 POLYGON ((110.1067 28.41835…
Yongshun 74715 84305 POLYGON ((110.0003 29.29499…
Anhua 174391 188958 POLYGON ((111.6034 28.63716…
Nan 150558 171869 POLYGON ((112.3232 29.46074…
Yuanjiang 122144 148402 POLYGON ((112.4391 29.1791,…
Jianghua 68012 83813 POLYGON ((111.6461 25.29661…
Lanshan 84575 104663 POLYGON ((112.2286 25.61123…
Ningyuan 143045 155742 POLYGON ((112.0715 26.09892…
Shuangpai 51394 73336 POLYGON ((111.8864 26.11957…
Xintian 98279 112705 POLYGON ((112.2578 26.0796,…
Huarong 47671 78084 POLYGON ((112.9242 29.69134…
Linxiang 26360 58257 POLYGON ((113.5502 29.67418…
Miluo 236917 279414 POLYGON ((112.9902 29.02139…
Pingjiang 220631 237883 POLYGON ((113.8436 29.06152…
Xiangyin 185290 219273 POLYGON ((112.9173 28.98264…
Cili 64640 83354 POLYGON ((110.8822 29.69017…
Chaling 70046 90124 POLYGON ((113.7666 27.10573…
Liling 126971 168462 POLYGON ((113.5673 27.94346…
Yanling 144693 165714 POLYGON ((113.9292 26.6154,…
You 129404 165668 POLYGON ((113.5879 27.41324…
Zhuzhou 284074 311663 POLYGON ((113.2493 28.02411…
Sangzhi 112268 126892 POLYGON ((110.556 29.40543,…
Yueyang 203611 229971 POLYGON ((113.343 29.61064,…
Qiyang 145238 165876 POLYGON ((111.5563 26.81318…
Taojiang 251536 271045 POLYGON ((112.0508 28.67265…
Shaoyang 108078 117731 POLYGON ((111.5013 27.30207…
Lianyuan 238300 256646 POLYGON ((111.6789 28.02946…
Hongjiang 108870 126603 POLYGON ((110.1441 27.47513…
Hengyang 108085 127467 POLYGON ((112.7144 26.98613…
Guiyang 262835 295688 POLYGON ((113.0811 26.04963…
Changsha 248182 336838 POLYGON ((112.9421 28.03722…
Taoyuan 244850 267729 POLYGON ((112.0612 29.32855…
Xiangtan 404456 431516 POLYGON ((113.0426 27.8942,…
Dao 67608 85667 POLYGON ((111.498 25.81679,…
Jiangyong 33860 51028 POLYGON ((111.3659 25.39472…

Finally, I plotted the maps.

w_sum_gdppc <- qtm(hunan, "w_sum GDPPC")
tmap_arrange(lag_sum_gdppc, w_sum_gdppc, asp=1, ncol=2)

Reflections

This exercise was interesting for me as I used to develop simple games when I was learning how to code. I implemented some collision detection algorithm to figure out if balls need to bounce, or if a killed character needs to disappear from screen.

However, the logic I did before was very simple compared to what was done in this exercise as most elements in my games were simple geometric shapes like circle or rectangles.

I am interested to know more how these “collisions” are detected in geospatial analysis.